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First and second order transition in frustrated XY systems?
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Abstract. The nature of the phase transition for the XY stacked triangular antiferromagnet (STA) is
a controversial subject at present. The field theoretical renormalization group (RG) in three dimensions
predicts a first order transition. This prediction disagrees with Monte-Carlo (MC) simulations which favor
a new universality class or a tricritical transition. We simulate by the Monte-Carlo method two models
derived from the STA by imposing the constraint of local rigidity which should have the same critical
behavior as the original model. A strong first order transition is found. Following Zumbach we analyze the
second order transition observed in MC studies as due to a fixed point in the complex plane. We review
the experimental results in order to clarify the critical behavior observed.

PACS. 05.70.Fh Phase transitions: general aspects – 64.60.Cn Order disorder transformations; statistical
mechanics of model systems – 75.10.-b General theory and models of magnetic ordering

1 Introduction

Phase transitions of frustrated spin systems have been ex-
tensively studied during the last decade (for reviews see
[1]). In particular the nature of the phase transition of the
stacked triangular antiferromagnet (STA) with XY spins
interacting via nearest-neighbor bonds has been exten-
sively investigated [3–6]. At high temperatures the sym-
metry group of this system is O(2) ⊗ Z2 whereas at low
temperatures this symmetry is completely broken. The
Ising symmetry Z2 has its origin in the non collinearity
of the spins in the ground state which can be classified
as chirality plus or minus. For non frustrated systems the
symmetry group in the high temperature region is simply
O(2) and this difference in symmetry between frustrated
and non frustrated spin systems should lead to a differ-
ent critical behavior. Bailin [7] and Garel [8], using the
renormalization group (RG), proved that there is no sta-
ble fixed point close to space dimension d = 4 and they
concluded that the transition is of first order. Extending
the RG technique to a N component spin system, that is
using 4 − ε expansion to first order in ε (two-loops) and
expanding also in 1/N , Kawamura [3] suggested a new
universality class linked to the chirality for the transition
with the exponents given by Monte-Carlo simulations [4].
With the same technique in d = 4− ε and in three dimen-
sions to three-loops, it was shown later that the transition
for N = 2 must be of first order [9,10]. Further Monte-
Carlo studies [6,5] have confirmed that the exponents for
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STA-system (see Tab. 5) are different from the ones of the
standard O(N) universality class (given in Tab. 6). Sim-
ulations seem to favor the concept of a new chiral univer-
sality class or tricritical behavior. However, Plumer and
Mailhot [11] used different exchange constants for spins
along the c-axis and spins in the triangular planes, so that
the hexagonal STA-system is quasi one-dimensional. They
concluded that the transition is weakly first order.

There are two principal groups of magnetic materi-
als which can be modeled by our system. Hexagonal per-
ovskites ABX3, which are quasi one dimensional systems
with a planar anisotropy so that the spins are in the XY -
plane belong to the first group. The most studied exam-
ples are CsMnBr3 [31–41], RbMnBr3 [42,43], CsVBr3 [44],
CsVcl3 [45], and CsCuCl3 [46,47]. For a review see refer-
ence [41]. The results of the first four compounds are com-
patible with second order transitions with exponents more
or less in agreement with the MC simulations: for exam-
ple ν = 0.50(1) in MC and between 0.54(3) and 0.57(3)
experimentally (for details see Tab. 1). However, the spe-
cific heat measurement of CsCuCl3 indicates a cross over
to first order in zero magnetic field [47].

Since the angle between the spins can be different from
120◦ for the STA-structure without changing the critical
behavior[12], helimagnetic rare earths (see Ref. [48], for Ho
[49–51,53,52,54–56], for Dy [57–63] and for Tb [64–68])
could also be analyzed by the STA-model. For helimagnets
the critical behavior is quite varied (see the review for Ho
and Dy Ref. [54]). Essentially three types of results exist:
one in favor of a O(4) class [54,55,61,62], another in favor
of a new universality class [51,52,59,60,64–68], and a third
class which favors first order transitions [50,57,58]. See
Tables 2-4 for details. With these results a definite answer
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Table 1. Experimental values of critical exponents for compound AXB3.

Crystal method Ref. α β γ ν

CsMnBr3 Neutron [32] 0.22(2)

CsMnBr3 Neutron [33] 0.25(1)

CsMnBr3 Neutron [34] 0.24(2)

CsMnBr3 Neutron [35] 0.21(2) 1.01(8) 0.54(3)

CsMnBr3 Neutron [36] 1.10(5) 0.57(3)

CsMnBr3 Calorimetry [37] 0.39(9)

CsMnBr3 Calorimetry [40] 0.40(5)

RbMnBr3 Neutron [42] 0.28(2)

RbMnBr3 Calorimetry [43] 0.22-0.42

CsCuCl3 Calorimetry [47] 0.35(5) if 10−3 < t < 5× 10−2

CsCuCl3 Calorimetry [47] > 0.6 if 5× 10−5 < t < 5× 10−3

Table 2. Experimental values of critical exponents for holmium.

Crystal Ref. α β γ ν

Thermal expansion [50] 1st order

Calorimetry [51] 0.27(2)

Calorimetry [37] 0.10-0.22

Neutron [52] 1.14(10) 0.57(4)

Neutron [53] 0.3(1) 1.24(15) 0.54(4)

Neutron [54] 0.39(2)

Neutron [55] 0.39(4)

X-ray [53] 0.37(1)

X-ray [56] 0.39(4)

Table 3. Experimental values of critical exponents for dysprosium.

method Ref. α β γ ν

Thermal expansion [57] 1st order

Calorimetry [58] 1st order

Calorimetry [59] 0.18(8)

Calorimetry [60] 0.24(2)

Neutron [52] 1.05(7) 0.57(5)

Neutron [54] 0.38(2)

Neutron [61] 0.38(3)

Neutron [62] 0.39(1)

Mössbauer [63] 0.335(10)

cannot be given about the order of transition. In Section 5
we will come back to this point.

In order to check the results of the renormalization
group studies [9] we have studied the STAR and the Stiefel
model [13]. The first is derived from the STA model by
imposing the constraint that in each triangle the sum of
the spins is zero at all temperatures. The modes removed
are irrelevant for the RG and the two models STA and
STAR should be in the same universality class, provided
such a class exists. As is explained in the next section the

Stiefel model we use for the simulation is connected to the
STAR model. Each cell of three spins plus constraint is
equivalent to a system of dihedral, i.e. an ensemble of two
perpendicular vectors. Neighboring pairs of vectors inter-
act ferromagnetically, but only vectors of the same kind.
Since these two systems have the same number of degrees
of freedom, they should belong to the same universality
class. We think that the two models are closer to the RG
studies than the original stacked triangle antiferromagnet.
We can therefore check the predictions of the RG and gain
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Table 4. Experimental values of critical exponents for ter-
bium.

method Ref. α β γ ν

Calorimetry [64] 0.20(3)

Neutron [65] 0.25(1)

Neutron [66] 0.23(4)

Neutron [67] 0.53

X-ray [68] 0.21(2)
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Fig. 1. Ground state configuration for the STA and the STAR
model. The chirality of each triangle is indicated by + or −.
The other ground state configuration with opposite chirality is
obtained by reversing all spins. The supertriangles are dark.

an understanding of the difficulties one has with the re-
sults of Monte-Carlo simulations and measurements in the
critical region.

In Section 2 we present the two models. The simula-
tions and the details of the finite size scaling analysis for
a first order transition are explained in Section 3. The re-
sults are shown in Section 4. Discussion and conclusions
are in Section 5.

2 Model and simulation

2.1 The STAR model

Starting from the stacked triangular antiferromagnet
(STA) we take the simplest Hamiltonian with one anti-
ferromagnetic interaction constant J > 0

H = J
∑
(ij)

Si.Sj , (1)

where Si are two component classical vectors of unit
length. The sum runs over all nearest neighbor pairs, that
is the spin Si has six nearest neighbor spins in the same
XY -plane and two in Z-direction in adjacent planes. The
ground state is characterized by a planar spin configura-
tion with three spins on each triangle forming a 120◦ struc-
ture with either positive or negative chirality (see Fig. 1).
The ground state degeneracy is thus twofold like the Ising
symmetry, in addition to the continuous degeneracy due
to global rotations.

In the RG theory one uses the concept of local rigidity
which means that the sum of three spins S1, S2, S3 on the
corners of a triangle is set to zero

S1 + S2 + S3 = 0 . (2)

In this theory the local fluctuations violating this con-
straint become modes with a gap. Thus they do not con-
tribute to the critical behavior and can be neglected. The
constraint in (2) used for an ordinary collinear antifer-
romagnet with two spins instead of three eliminates also
one degree of freedom so that only one is left which means
that the critical behavior of antiferromagnet is the same
as that of a ferromagnet. In our case we are left with two
degrees of freedom. We choose one spin direction and then
have one more choice for the chirality, that is the direction
of the second spin could be chosen clockwise or counter-
clockwise with respect to the first spin.

In order to impose local rigidity for the MC simula-
tion, we first partition the lattice into interacting triangles
which do not have common corners. This can be done as
follows. In each XY -plane one selects in a row one “su-
pertriangle”. Then one finds two nearest supertriangles
which do not share a common corner in the row (they
are separated by two head-up and three head-down trian-
gles). This process is repeated. Then one takes the next
row until all rows in the XY -planes are filled with trian-
gles which do not share corners, see Figure 1. All spins
are then located on the supertriangles and each spin be-
longs to only one supertriangle. Local rigidity means that
the three spins in each supertriangle form a 120◦ struc-
ture. Only in the ground state all the supertriangle have
the same orientation. At finite temperature local rigidity
means that there are no local fluctuations within a su-
pertriangle, but fluctuations between supertriangles are
allowed.

The MC updating procedure for the state of the super-
triangles is made as follows. At a supertriangle, we take a
new random orientation for one of its three spins; next we
choose a second spin so as to form a ± 120◦ angle with
the first spin. For the orientation of the third no freedom
is left. The interaction energy between the spins of this
supertriangle with the spin of the neighboring supertri-
angles is calculated in the usual way and we follow the
standard Metropolis algorithm to update one supertrian-
gle after the other.

We consider L × L × Lz systems, where L × L is the
size of the planes, and Lz = 2L/3 the number of planes.
L must be a multiple of three so that no frustration oc-
curs because of periodic boundary conditions in the XY -
planes. Simulations have been done for systems sizes with
L = 12, 18, 24, 30, and 36.

The order parameter M used in the calculation is

M =
1

N

3∑
i=1

|Mi| , (3)

where Mi (i = 1, 2, 3) is the i-th sublattice magnetiza-
tion and N = L2Lz is the total number of the lattice



738 The European Physical Journal B

Fig. 2. The dihedral are drawn at the center of each elemen-
tary supertriangle.

sites. This definition corresponds to the one for the ordi-
nary antiferromagnet with only two sublattices. Instead
of alternating signs for the collinear case the non collinear
staggered magnetization is obtained by making a rotation
of +120◦ (−120◦) for the second (third) magnetization
before summing over the three sublattice magnetizations.

The chirality κ is defined in the usual way

κi =
2

3
√

3

[
S1
i × S2

i + S2
i × S3

i + S3
i × S1

i

]
, (4)

κ =
1

N ′

∣∣ ∑
i

κi
∣∣ , (5)

where the summation is over all supertriangles and N ′ =
N/3 is their number. The chirality κi of one triangle is
parallel to the Z-axis and equal to ± 1.

2.2 The Stiefel model

The Stiefel model can be derived from the STAR model
[2]. We give the main points. In each elementary cell an
orthonormal basis

ea(i); a = 1, 2 (6)

is defined, where i is the superlattice index. Each spin
located in the cell can be represented in this basis

Si =
∑
a

sa(i) ea(i) . (7)

If we put this expression into the Hamiltonian (1) we ob-
tain a new Hamiltonian with interactions between the or-
thogonal vectors ea(x):

H = J
∑
ij

[
e1(i) · e1(j) + e2(i) · e2(j)

]
. (8)

The interaction can be chosen negative (or ferromagnetic)
and the sum

∑
ij is for simplicity over nearest neighbor

pairs of a simple cubic lattice instead of a hexagonal lat-
tice since the new spins ea (see Figs. 2 and 3) are no
longer frustrated. The chirality κ for the Stiefel model is
defined as

κ =
1

N

∣∣∑
ie1(i)× e2(i)

∣∣ . (9)

1

a)

b)

θ
1

2

J 2

J
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e (i)
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e (i) e (j)

e (i)

e (i)

e (j)

e (j)

Fig. 3. (a) Dihedral and their interaction. e1(i) interacts only
with e1(j) not with e2(j) which interacts with e2(i). (b) Two
dihedral with opposite chirality. The energy of the interaction
is equal to cos(π − θ) + cos(θ) = 0.

The Hamiltonian (8) is similar to the one of the Ashkin-
Teller model [14]. Indeed we can give this Hamiltonian a
form which is close to it. The interaction energy of two
nearest neighbors (ij) with opposite chirality (9) is zero
and with the same chirality it is 2 e1(i)e1(j) (see Fig. 3).
Therefore the Hamiltonian can be written as

H = J
∑
i,j

(1 + σiσj) SiSj (10)

where σ = ± 1 is an Ising spin representing the chirality
and Si is anXY -spin. In Hamiltonian of Ashkin and Teller
only Ising spins appear.

Despite the fact that the Stiefel model is extensively
studied, especially in two dimensions, no clear picture
emerged. The problem is to know whether there are two
transitions, an Ising and a Kosterlitz-Thouless transition,
or only one transition of a new type [15,16]. In three di-
mensions it has been shown that there is only one transi-
tion [2–5]. Here the problem is to determine the order of
the transition.

The procedure of MC procedure is as follows. At each
site one takes a new random orientation for the first vector
and chooses for the second vector a perpendicular direc-
tion (we have two choices: ± 90◦, the Ising degrees of free-
dom). We have two degrees of freedom the same number
as for the STAR model. The interaction energy between
this dihedral and its neighbors is calculated. If it is lower
than the energy of the old state, the new state is accepted.
Otherwise, it is accepted only with a probability according
to the standard Metropolis algorithm. It is possible to use
a cluster MC algorithm [13], but in the case of a strong
first order transition there is no reduction of the critical
slowing down [17]. Periodic boundary conditions are used.

Systems with L = 12, 15, 18, 21, 24 have been simu-
lated. To compare with the size L of the STA or the STAR
model, we must multiply L by

√
3. One supertriangle or

triangle contains three spins and is represented by one site
in the Stiefel model. So we obtain equivalent sizes from 20
to 40.
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The order parameter M for this model is

M =
1

N

2∑
i=1

∣∣Mi

∣∣ , (11)

where Mi (i = 1, 2) is the magnetization for the vectors ei
and the sum is over all sites and N = L3 the total number
of sites.

2.3 Definitions, histogram methods
and finite-size scaling

We use in this work the histogram MC technique devel-
oped by Ferrenberg and Swendsen [18,19]. The histogram
for the energy PT (E) is very useful for identifing a first
order transition. Also the data obtained by simulation at
T0 can be used to obtain thermodynamic quantities at
temperature T close to T0. Since the energy spectrum
of a Heisenberg spin system is continuous, the data list
obtained from a simulation is basically a histogram with
one entry per energy value. In order to use the histogram
method efficiently, we divided the energy range E < 0 by
10 000 bins. We have verified that we obtain the same
results, with our precision, for 30 000 bins.

The critical slowing down in a first order transition is
greater than in a second order transition because of en-
ergy barriers, and thus the time of the simulation, to go
from one state to another grows exponentially with the
size of the lattice. For this reason we restricted our sim-
ulations to systems not too large to have good enough
statistics. In each simulation, at least 2 millions (3 mil-
lions for the greater sizes) measurements were made after
enough Metropolis updating (500 000) were carried out to
reach equilibration.

For each temperature T we calculate the following
quantities

C =
(〈E2〉 − 〈E〉2)

NkBT 2
, (12)

χ =
N(〈M2〉 − 〈M〉2)

kBT
, (13)

χκ =
N(〈κ2〉 − 〈κ〉2)

kBT
, (14)

V = 1−
〈E4〉

3〈E2〉2
, (15)

where M is the order parameter, C the specific heat per
site, χ the magnetic susceptibility per site, V the fourth
order energy cumulant, 〈...〉 means the thermal average.

The finite size scaling (FSS) for a first order transition
has been extensively studied [20–22]. A first order transi-
tion should be identified by the following properties:

a) PT (E) has a double peak.
b) The maximum of the specific heat C and the suscep-

tibilities χ and χκ are proportional to the volume Ld.
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Fig. 4. Specific heat for the STAR model for various sizes as
function of temperature.
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Fig. 5. Maxima of the specific heat C, the susceptibility χ
(magnetization) and χκ (chirality) as function of the volume
V = L2 · Lz for the STAR model.

c) The minimum of the fourth order energy cumulant V
varies as:

V = V ∗ + b L−d , (16)

where V ∗ is different from 2/3, see below.
d) The temperatures T (L) at which the quantities C, χ

or χκ have a maximum should vary as:

T (L) = Tc + aL−d. (17)

All this conditions will be verified for our systems.

3 Results

In Figure 4 the specific heat C of the STAR model is
plotted as function of the temperature for various sizes (we
note that the maximum is 30 times larger than the usual
value of STA which is a sign of a first order transition).
The value of the maximum as function of the volume is
shown in Figure 5 for C, χ and χκ. We note that the
maxima vary like the volume except for the smaller sizes
where further corrections are important.

In Figure 6 the same quantities are shown for the
Stiefel model. In all cases the maxima vary for the greater
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Fig. 6. Maxima of the specific heat C, the susceptibility χ
(magnetization) and χκ (chirality) as function of the volume
V = L3 for the Stiefel model.
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Fig. 7. V as function of temperature for different sizes for the
STAR model. The dotted line indicates the value of V ∗ = 2/3
for the second order transition. The broken line is our estimate
of V ∗ at the critical temperature Tc = 2.2990.
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Fig. 8. V as function of the temperature for different sizes
for the Stiefel model. The dotted line indicates the value of
V ∗ = 2/3 for the second order transition. The broken line is
our estimate of V ∗ at the critical temperature Tc = 2.4428.

sizes proportional to the volume as they should for a first
order transition.

In Figures 7 and 8 we have plotted V as function of T
for different sizes L for the STAR and the Stiefel model
respectively. We can see that V does not tend to 2/3 (for
a second order transition) but to a value V ∗ < 2/3. This
value is calculated by fiting the minimum with (16). As
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Fig. 9. Energy histogram P (E) as function of energy per site
E for the STAR model for various sizes L at different tempera-
tures of simulation: T12 = 2.3136, T18 = 2.3065, T24 = 2.3020,
T30 = 2.30085, T36 = 2.29968.
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Fig. 10. Energy histogram P (E) as function of energy per
site E for the Stiefel model for various sizes L at different
temperatures of simulation: T12 = 2.4495, T15 = 2.4468, T18 =
2.44525, T21 = 2.44425, T24 = 2.44377.

result we obtain for the STAR model

V ∗ = 0.652(2) (18)

and for the Stiefel model

V ∗ = 0.625(3). (19)

Figures 9 and 10 show the energy distribution for different
sizes at different temperatures for the STAR and Stiefel
model. The double peaks observed, even for a very small
L, indicate a strong first order transition. With increasing
sizes, these two peaks are separated by a region of zero
probability, indicating a discontinuity of the energy at the
transition. We estimate the correlation length ξ0 by 1/3
of the smallest size where the two peaks are well sepa-
rated by a region of zero probability which is the distance
needed for the two phases to coexist. This method yields
the correct answer in the case of Potts models. We obtain
ξ0 ∼ 12 for the STAR model and ξ0 ∼ 9 for the Stiefel
model (see Figs. 9 and 10).

To obtain the critical temperature we can use (17).
The results are

Tc = 2.2990(5) (20)
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Table 5. Critical exponents by Monte-Carlo for O(2)⊗Z2. The first result [4] comes from a study at high and low temperature
and uses of FSS. The second [5] uses the Binder parameter [24] to find Tc and uses the FSS, the third [6] uses the maxima in
FSS region. The results βκ, γκ, νκ are the exponents for the chirality.

Ref. α β γ ν η1 βκ γκ νκ

[4] 0.34(6) 0.253(10) 1.13(5) 0.54(2) −0.09(8) 0.45(2) 0.77(5) 0.55(2)

[5] 0.46(10) 0.24(2) 1.03(4) 0.50(1) −0.06(4) 0.38(2) 0.90(9) 0.55(1)

[6] 0.43(10) 0.48(2)

1 calculated by γ/ν = 2− η.

for the STAR model and

Tc = 2.4428(4) (21)

for the Stiefel model. We have sizable corrections for the
small systems. Comparing the last results with those of
Kunz and Zumbach [13] for the case V2,2 similar to ours
we agree with their result Tc = 2.445.

Our results show clearly the first order transition for
the STAR and Stiefel model. So we confirm the indication
given in [13] for the Stiefel model where in the high tem-
perature region ν was determined not too far away from
1/3 which is the value for a first order transition.

4 Discussion

We have shown that the STAR and the Stiefel model have
first order transitions. These models are equivalent to the
STA in the RG theory, because the constraint of local
rigidity is not relevant in the transition region. Conse-
quently the phase transition for the original triangular
antiferromagnet STA must also be of first order, and this
result holds generally for all systems with a breakdown of
symmetry of type O(2) ⊗ Z2. How can we reconcile our
results with those of the MC of the STA model and the
experimental results?

For the MC simulation of the original frustrated spin
system the second order transition is an effect of the finite
system size according to Zumbach’s analysis of “almost
second order phase transitions” [25]. The main point of
this analysis is that the stable fixed point Fc, known to
exist only for the number of components N > Nc, moves
into the unphysical complex plane when N < Nc. In our
case N = 2, the estimation for Nc is Nc = 3.91 [9] and
a second order transition could never occur. Nevertheless
this complex fixed point has a large basin of attraction
and mimics a behavior of a real fixed point. Only if the
system is very large, i.e. if L ≥ ξ0, where ξ0 is the largest
correlation length, the transition will appear of first order.
The phenomenon of a crossover between a second order to
a first order transition is not so uncommon. An extreme
case is the Potts model in two dimensions with q = 5
components, where the transition is known to be of first
order [27]. The MC always gives a second order transition
with critical exponents of an instable fixed point [28] due
to the enormous correlation length ξ0.

If the Hamiltonian is a sum of two terms, one inter-
action being of the Heisenberg symmetry and the other

of Ising symmetry: H = HHeisenberg + HIsing and if
HIsing � HHeisenberg , one has a crossover between a re-
gion of Heisenberg type to Ising behavior close to Tc. If
the system size is too small we will only see the region
controlled by the Heisenberg fixed point and therefore ob-
tain the exponents of the Heisenberg magnet. In a sense
we have the same situation if we replace the Heisenberg
fixed point by the Zumbach fixed point. However, there is
an essential difference: for the fixed point in the complex
plane, one has to modify the scaling relation

γ/ν = 2− η + c (22)

by a constant c different from zero [25]. If the fixed point
is real c must be zero.

We can use this relation as a criterion for real or com-
plex fixed points. In three dimensions η is usually small,
that is ∼ 0.03 (see Tab. 6), but it must be positive [29] and
therefore γ/ν ≤ 2 for a genuine second order phase transi-
tion. If the ratio γ/ν > 2 the fixed point must be complex.
The correction c in the scaling law (22) will depend on
the distance of the fixed point from real space. Therefore
one expects that c will be greater for the XY (N = 2)
case than for the Heisenberg (N = 3) case. For frustrated
Heisenberg systems it will be difficult to find out whether
ηeff = η − c is negative.

With the relation γ/ν = 2 − η we obtain η = −0.06
using the results of MC simulation [5] and η = −0.16
from experimental values of Ho [53]. Thus the fixed point
is in the complex plan and the second order transition
observed in the XY systems has only an “almost second
order” character.

The effect of imposing local rigidity obviously forces
the system to stay away from the region of influence of
the complex fixed point Fc and thus permits to “see” the
true first order behavior. Introducing larger coupling con-
stants for inter-plane interactions than for intra-plane in-
teractions [11] seems to have a similar effect as the local
rigidity constraint.

A further remark concerning MC simulations and the
fixed point Fc in the complex plane: Zumbach [25] has
shown that the finite size scaling in this case does not hold.
The FSS ansatz for the free energy should be replaced by

f = L−dg[L/ξ, c2ln(L)] , (23)

where g is a function of L/ξ, but also of lnL. The constant
c2 is proportional to the constant c of (22). This constant
is small and therefore the correction to FSS. Indeed if we
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Table 6. Critical exponents for the ferromagnetic systems
calculated by RG [26].

symmetry α β γ ν η

Z2 0.107 0.327 1.239 0.631 0.038

O(2) −0.010 0.348 1.315 0.670 0.039

O(3) −0.117 0.366 1.386 0.706 0.038

O(4) −0.213 0.382 1.449 0.738 0.036

O(5) −0.297 0.396 1.506 0.766 0.034

O(6) −0.370 0.407 1.556 0.790 0.031

take for the true value of η the value of the ferromagnetic
case η ∼ 0.03 (see Tab. 6) the value of c will be at most
equal to c ∼ 0.03 + 0.06 ∼ 0.1 (see discussion above) and
if we compare with 2− η in (22) this gives an error of 5%.
However, small but not negligible corrections to the stan-
dard FSS could explain the differences in MC simulations
obtained with different methods (see Tab. 5).

We will discuss now the experiments in the light of the
concepts used. In order to see the first order region the
temperature resolution is the limiting factor not the finite

size. However, they are linked through t0 ∝ ξ
−1/ν
0 with

ν ∼ 0.5 found by MC and ξ0 depending on the materials
studied. The temperature distance t0 = (T −Tc)/Tc could
be too small to be measurable.

The experiments on CsMnBr3 [31–41], RbMnBr3

[42,43] and CsVBr3 [44] (Tab. 1) give exponents compati-
ble with those of MC on STA and a second order transition
(see Tabs. 1 and 5). We can interpret this result by the
fact that the systems are under the influence of a com-
plex fixed point and t0 is too small to observe a first order
transition.

The case CsCuCl3 [47] (Tab. 1) is different since
the authors observe a crossover from a second order re-
gion with exponents compatible with MC on STA for
10−3 < t < 5 × 10−2 to a region of first order transi-
tion for 5 × 10−5 < t < 5 × 10−3. For t < t0 ≈ 10−3 one
seems to observe the true first order region.

Helimagnetic rare earth metals are more complicated
as already discussed in the introduction (see also Tabs. 2-
4). The results compatible with those of the MC on STA
for Ho [51,53,52] (Tab. 2), Dy [52,59,60] (Tab. 3) and Tb
[64–68] (Tab. 4) can be interpreted as before: the systems
are under the influence of Fc. The first order transition for
Ho [50] and Dy [57,58] is due to the fact that the measure-
ments were done in the first order region near the critical
temperature. The values of the exponent β ∼ 0.39 in the
case of Ho and Dy (see Tabs. 2-3) are not compatible with
those found by MC (β ∼ 0.25). This fact can be explained
by the presence of a second length scale in the critical fluc-
tuations near Tc related to random strain fields which are
localized at or near the sample surface [53]. Thus the criti-
cal exponent β measured is of this second length. However
the result of β for Tb (Tab. 4) shows values compatible
with MC but it has been proved that this second length

is present also in Tb [67]. Further measurements to deter-
mine β should help in the interpretation.

We have tried to give a general picture of the phase
transition of frustrated XY spins where the breakdown
of symmetry is of type O(2) ⊗ Z2. We have shown that
this transition is first order but usually not seen because
of the presence of a fixed point in the complex plane. One
way to observe that the behavior is really driven by such
a fixed point is the existence of a negative value for η in
the Monte-Carlo simulations and experimental systems.
Another problem discussed in the literature is that the
transition is influenced by the presence of topological de-
fect which are not visible in the continuum formulation of
the RG (for the presence of topological defect in Stiefel
model see [13]).

From our experience with the frustrated XY -model we
conclude that the true first order transition for the frus-
trated Heisenberg model cannot be reached in MC sim-
ulations. The experimental situation should be similar.
However, due to presence of the anisotropies one possi-
bly cannot reach the Heisenberg first order region but will
have a crossover to the Ising or XY region [16].

This work was supported by the Alexander von Humboldt
Foundation. One of the authors (D.L.) is grateful to Profes-
sors B. Delamotte, H.T. Diep and A. Dobry for discussions,
and for A.I. Sokolov for the reference to the proof of η ≥ 0.

References

1. Magnetic Systems with Competing Interactions (Frustrated
Spin Systems), edited by H.T. Diep (World Scientific, Sin-
gapore, 1994).

2. P. Azaria, B. Delamotte, in [1] edited by H.T. Diep (World
Scientific, Singapore, 1994).

3. H. Kawamura, Phys. Rev. B 38, 4916 (1988); 42, 2610
(1990).

4. H. Kawamura, J. Phys. Soc. Jpn 61, 1299 (1992); 58, 584
(1989); 56, 474 (1987); 55, 2095 (1986).

5. M.L. Plumer, A. Mailhot, Phys. Rev. B 50, 16113 (1994).
6. E.H. Boubcheur, D. Loison, H.T. Diep, Phys. Rev. B 54,

4165 (1996).
7. D. Bailin, A. Love, M.A. Moore, J. Phys. C 10, 1159

(1977).
8. T. Garel, P. Pfeuty, J. Phys. C 9, L245 (1976).
9. S.A. Antonenko, A.I. Sokolov, Phys. Rev. B 49 15901

(1994).
10. S.A. Antonenko, A.I. Sokolov, V.B. Varnoshev, Phys. Lett.

A 208, 161 (1995).
11. M.L. Plumer, A. Mailhot, J. Phys.-Cond. 9, L165 (1997).
12. H. Kawamura, Prog. Theo. Phys. Supp. 101, 545 (1990).
13. H. Kunz, G. Zumbach, J. Phys. A 26, 3121 (1993).
14. J. Askin, E. Teller, Phys. Rev. 64, 178 (1943)
15. E. Granato, J.M. Kosterlitz, J. Lee, M.P. Nightingale,

Phys. Rev. Lett. 66, 1090 (1991); J. Lee, E. Granato, J.M.
Kosterlitz, Phys. Rev. B 44, 4819 (1991); M.P. Nightin-
gale, E. Granato, J.M. Kosterlitz, Phys. Rev. B 52, 7402
(1995); E. Granato, M.P. Nightingale, Physica B 222, 266
(1996).

16. D. Loison, P. Simon, in preparation.



D. Loison and K.D. Schotte: First and second order transition in frustrated XY systems 743

17. W. Janke, Phys. Rev. B 47, 14757 (1993).
18. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 61,

2635 (1988).
19. A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63,

1195 (1989).
20. V. Privman, M.E. Fisher, J. Stat. Phys. 33, 385 (1983).
21. K. Binder, Rep. Prog. Phys. 50, 783 (1987).
22. A. Billoire, R. Lacaze, A. Morel, Nucl. Phys. B 370, 773

(1992).
23. D. Loison, in preparation.
24. K. Binder, Z. Phys. B 43, 119 (1981).
25. G. Zumbach, Phys. Rev. Lett. 71, 2421 (1993); 2421

(1993); Nucl. Phys. B 413, 771 (1994).
26. S.A. Antonenko, A.I. Sokolov, Phys. Rev. E 51, 1894

(1995).
27. R.J. Baxter, Exactly solved models in statistical mechanics

(London, Academic Press, 1982).
28. P. Peczak, D.P. Landau, Phys. Rev. B 39, 11932 (1989).
29. A.Z. Patashinskii, V.I. Pokrovskii, Fluctuation Theory of

Phase Transitions (Pergamon press, 1979), Chap. 7.
30. D. Loison, K.D. Schotte, in preparation.
31. T.E. Mason, Y.S. Yang, M.F. Collins, B.D. Gaulin, K.N.

Clausen, A. Harrison, J. Magn. Magn. Mater 104-107, 197
(1992).

32. T.E. Mason, M.F. Collins, B.D. Gaulin, J. Phys. C 20,
L945 (1987).

33. Y. Ajiro, T. Nakashima, Y. Unno, H. Kadowaki, M.
Mekata, N. Achiwa, J. Phys. Soc. Jpn 57, 2648 (1988).

34. B.D. Gaulin, T.E. Mason, M.F. Collins, J.F. Larese, Phys.
Rev. Lett. 62, 1380 (1989).

35. T.E. Mason, B.D. Gaulin, M.F. Collins, Phys. Rev. B 39,
586 (1989).

36. H. Kadowaki, S.M. Shapiro, T. Inami, Y. Ajiro, J. Phys.
Soc. Jpn 57, 2640 (1988).

37. J. Wang, D.P. Belanger, B.D. Gaulin, Phys. Rev. Lett. 66,
3195 (1991).

38. H. Weber, D. Beckmann, J. Wosnitza, H.V. Löhneysen, D.
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